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Abstract

Generative priors of large-scale text-to-image diffusion models enable a wide range
of new generation and editing applications on diverse visual modalities. However,
when adapting these priors to complex visual modalities, often represented as
multiple images (e.g., video or 3D scene), achieving consistency across a set of
images is challenging. In this paper, we address this challenge with a novel method,
Collaborative Score Distillation (CSD). CSD is based on the Stein Variational
Gradient Descent (SVGD). Specifically, we propose to consider multiple samples
as “particles” in the SVGD update and combine their score functions to distill
generative priors over a set of images synchronously. Thus, CSD facilitates the
seamless integration of information across 2D images, leading to a consistent visual
synthesis across multiple samples. We show the effectiveness of CSD in a variety
of editing tasks, encompassing the visual editing of panorama images, videos, and
3D scenes. Our results underline the competency of CSD as a versatile method
for enhancing inter-sample consistency, thereby broadening the applicability of
text-to-image diffusion models.1

1 Introduction

Text-to-image diffusion models [1, 2, 3, 4] have been scaled up by using billions of image-text
pairs [5, 6] and efficient architectures [7, 8, 9, 4], showing impressive capability in synthesizing
high-quality, realistic, and diverse images with the text given as an input. Furthermore, they have
branched into various applications, such as image-to-image translation [10, 11, 12, 13, 14, 15, 16],
controllable generation [17], or personalization [18, 19]. One of the latest applications in this regard
is to translate the capability into other complex modalities, viz., beyond 2D images [20, 21] without
modifying diffusion models using modality-specific training data. This paper focuses on the problem
of adapting the knowledge of pre-trained text-to-image diffusion models to more complex high-
dimensional visual manipulation tasks beyond 2D images without modifying diffusion models using
modality-specific training data.

We start from an intuition that many complex visual data, e.g., videos and 3D scenes, are represented
as a set of images constrained by modality-specific consistency. For example, a video is a set of frames
requiring temporal consistency, and a 3D scene is a set of multi-view frames with view consistency.
Unfortunately, image diffusion models do not have a built-in capability to ensure consistency between
a set of images for synthesis or editing because their generative sampling process does not take
into account the consistency when using the image diffusion model as is. As such, when applying
image diffusion models to manipulate these complex data without consistency in consideration, it
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Figure 1: Method overview. CSD-Edit enables various visual-to-visual translations with two novel
components. First, a new score distillation scheme using Stein variational gradient descent, which
considers inter-sample relationships (Section 3.1) to synthesize a set of images while preserving
modality-specific consistency constraints. Second, our method edits images with minimal information
given from text instruction by subtracting image-conditional noise estimate instead of random noise
during score distillation (Section 3.2). By doing so, CSD-Edit is used for text-guided manipulation of
various visual domains, e.g., panorama images, videos, and 3D scenes (Section 3.3).

results in a highly incoherent output, as in Figure 2 (Patch-wise Crop), where one can easily identify
where images are being stitched. Such behaviors are also reported in video editing, thus, recent
works [22, 23, 24, 25] propose to handle video-specific temporal consistency when using the image
diffusion model.

Here, we take attention to an alternative approach, Score Distillation Sampling (SDS) [26], which
enables the optimization of arbitrary differentiable operators by leveraging the rich generative prior
of text-to-image diffusion models. SDS poses generative sampling as an optimization problem by
distilling the learned diffusion density scores. While Poole et al. [26] has shown the effectiveness
of SDS in generating 3D objects from the text by resorting on Neural Radience Fields [27] priors
which inherently suppose coherent geometry in 3D space through density modeling, it has not been
studied for consistent visual manipulation of other modalities, where modality-specific consistency
constraints should be considered when manipulating.

In this paper, we propose Collaborative Score Distillation (CSD), a simple yet effective method that
extends the singular of the text-to-image diffusion model for consistent visual manipulation. The
crux of our method is two-fold: first, we establish a generalization of SDS by using Stein variational
gradient descent (SVGD), where multiple samples share their knowledge distilled from diffusion
models to accomplish inter-sample consistency. Second, we present CSD-Edit, an effective method
for consistent visual editing by leveraging CSD with Instruct-Pix2Pix [14], a recently proposed
instruction-guided image diffusion model (See Figure 1).

We demonstrate the versatility of our method in various editing applications such as panorama image
editing, video editing, and reconstructed 3D scene editing. In editing a panorama image, we show
that CSD-Edit obtains spatially consistent image editing by optimizing multiple patches of an image.
Also, compared to other methods, our approach achieves a better trade-off between source-target
image consistency and instruction fidelity. In video editing experiments, CSD-Edit obtains temporal
consistency by taking multiple frames into optimization, resulting in temporal frame-consistent
video editing. Furthermore, we apply CSD-Edit to 3D scene editing and generation, by encouraging
consistent manipulation and synthesis among multiple views.

2 Preliminaries

2.1 Diffusion models

Generative modeling with diffusion models consists of a forward process q that gradually adds
Gaussian noise to the input x0 ∼ pdata(x), and a reverse process p which gradually denoises from
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Figure 2: Panorama image editing. (Top right) Instruct-Pix2Pix [14] on cropped patches results in
inconsistent image edits. (Second row) Instruct-Pix2Pix on overlapping patches edits to a consistent
image, but less fidelity to the instruction, even with high guidance scale ωy. (Third row) CSD-Edit
provides consistent image editing with better instruction-fidelity by setting a proper guidance scale.

the Gaussian noise xT ∼ N (0, I). Formally, the forward process q(xt|x0) at timestep t is given by
q(xt|x0) = N (xt;αtx0, σ

2
t I), where σt and α2

t = 1 − σ2
t are pre-defined constants designed for

effective modeling [8, 28, 29]. Given enough timesteps, reverse process p also becomes a Gaussian
and the transitions are given by posterior q with optimal MSE denoiser [30], i.e., pϕ(xt−1|xt) =
N (xt−1;xt − x̂ϕ(xt; t), σ

2
t I), where x̂ϕ(xt; t) is a learned optimal MSE denoiser. Ho et al. [7]

proposed to train an U-Net [31] autoencoder ϵϕ(xt; t) by minimizing following objective:

LDiff(ϕ;x) = Et∼U(0,1),ϵ∼N (0,I)

[
w(t)∥ϵϕ(xt; t)− ϵ∥22

]
, xt = αtx0 + σtϵ (1)

where w(t) is a weighting function for each timestep t. Text-to-image diffusion models [1, 2, 4, 3]
are trained by Eq. (1) with ϵϕ(xt; y, t) that estimates the noise conditioned on the text prompt
y. To effectively guide the text-conditional generation, Ho et al. [32] proposed classifier-free
guidance (CFG), where they jointly train the unconditional and conditional model and interpolate the
unconditional and conditional model during the inference, i.e., the noise estimate is given by

ϵωϕ(xt; y, t) = ϵϕ(xt; t) + ωy

(
ϵϕ(xt; y, t)− ϵϕ(xt; t)

)
, (2)

where ωy ≥ 0 is a guidance scale that controls the sample fidelity. Specifically, increasing ωy enhances
sample fidelity at the expense of sample diversity. Throughout the paper, we refer pωy

ϕ (xt; y, t) a
conditional distribution of a text y.

Instruction-based image editing by Instruct-Pix2Pix. Recently, many works have demonstrated
the capability of diffusion models in editing or stylizing images [10, 13, 11, 12, 14]. Among them,
Brooks et al. [14] proposed Instruct-Pix2Pix, where they finetuned Stable Diffusion [4] model with
the source image, text instruction, (edited) target image (edited by Prompt-to-Prompt [12]) triplets to
enable instruction-based editing of an image. Then during the inference, Instruct-Pix2Pix starts from
a source image and conducts diffusion sampling by the diffusion model that takes instruction y. In
specific, given the source image x̃ and instruction y, the noise estimate at time t is given by

ϵ
ωs,ωy

ϕ (xt; x̃, y, t) = ϵϕ(xt; t) + ωs

(
ϵϕ(xt; x̃, t)− ϵϕ(xt; t)

)
+ ωy

(
ϵϕ(xt; x̃, y, t)− ϵϕ(xt; x̃, t)

)
,

(3)

where ωy ≥ 0 is the CFG parameter for text instruction as in Eq. (2) and ωs ≥ 0 is an additional
CFG parameter that controls the fidelity to the source image x̃.

2.2 Score distillation sampling

Poole et al. [26] proposed Score Distillation Sampling (SDS), an alternative sample generation
method by distilling the rich knowledge of text-to-image diffusion models. SDS allows optimization
of any differentiable image generator, e.g., Neural Radiance Fields [27] or the image space itself.
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“Make it as a painting of Claude Monet”
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Figure 3: Video editing. Qualitative results on the lucia video in DAVIS 2017 [33]. CSD shows
frame-wise consistent editing providing coherent content across video frames e.g., consistent color
and background without changes in person. Compared to Gen-1 [21], a video editing method trained
on a large video dataset, CSD-Edit shows high-quality video editing results reflecting given prompts.

Formally, let x = g(θ) be an image rendered by a differentiable generator g with parameter θ, then
SDS minimizes density distillation loss [34] which is a variational inference via minimizing KL
divergence between the posterior of x = g(θ) and the text-conditional density pωϕ :

min
θ
LDistill

(
θ;x = g(θ)

)
= Et,ϵ

[
αt/σt DKL

(
q
(
xt|x = g(θ)

)
∥ pωϕ(xt; y, t)

)]
, (4)

where xt = αtx + σtϵ with x = g(θ) and ϵ ∼ N (0, I). They derive SDS by differentiating
Eq. 4 with respect to generator parameter θ, but omitting the U-Net Jacboian term due to its poor
performance and computationally inefficient. The SDS gradient update is given as follows:

∇θLSDS
(
θ;x = g(θ)

)
= Et,ϵ

[
w(t)

(
ϵωϕ(xt; y, t)− ϵ

)∂x
∂θ

]
. (5)

In its implementation, we randomly sample timestep from uniformly distributed interval U [tmin, tmax].
The range of timesteps tmin and tmax are chosen to sample from not too small or large noise levels,
and the guidance scales are chosen to be larger than those used for image generation.

2.3 Stein variational gradient descent

The original motivation of Stein variational gradient descent (SVGD) [35] is to solve a variational
inference problem, where the goal is to approximate a target distribution from a simpler distribution
by minimizing KL divergence. Formally, suppose p is a target distribution with a known score
function∇x log p(x) that we aim to approximate, and q(x) is a known source distribution. Liu and
Wang [35] showed that the steepest descent of KL divergence between q and p is given as follows:

Eq(x)

[
f(x)⊤∇x log p(x) + Tr(∇xf(x))

]
, (6)

where f : RD → RD is any smooth vector function that satisfies lim∥x∥→∞ p(x)f(x) = 0. Remark
that Eq. (6) becomes zero if we replace q(x) with p(x) in the expectation term, which is known as
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(a)“What if he were an anime character?”
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Figure 4: 3D NeRF scene editing. Visualizing novel-views of edited Fangzhou NeRF scene [37].
CSD-Edit leads to high-quality editing of 3D scenes and better preserves semantics of source scenes,
e.g., obtains sharp facial details (left) and makes him smile without giving beard (right).

Stein’s identity [36]. Here, the choice of the critic f is crucial in its convergence and computational
tractability. To that end, Liu and Wang [35] proposed to constrain f in the Reproducing Kernel Hilbert
Space (RKHS) which yields a closed-form solution. Specifically, given a positive definite kernel
k : RD × RD → R+, Stein variational gradient descent provides the greedy directions as follows:

x← x− η∆x, ∆x = Eq(x′)

[
k(x,x′)∇x′ log p(x′) +∇x′k(x,x′)

]
, (7)

with small step size η > 0. The SVGD update in Eq. (7) consists of two terms that play different
roles: the first term moves the particles towards the high-density region of target density p(x), where
the direction is smoothed by kernels of other particles. The second term acts as a repulsive force that
prevents the mode collapse of particles. One can choose different kernel functions, while we resort to
standard Radial Basis Function (RBF) kernel k(x,x′) = exp(− 1

h∥x−x′∥22) with bandwidth h > 0.

3 Method

In this section, we introduce Collaborative Score Distillation (CSD) for consistent synthesis and
editing of multiple samples. We first derive a collaborative score distillation method using Stein
variational gradient descent (Section 3.1) and propose an effective image editing method using
CSD, i.e., CSD-Edit, that leads to coherent editing of multiple images with instruction (Section 3.2).
Lastly, we present various applications of CSD-Edit in editing panorama images, videos, and 3D
scenes (Section 3.3).

3.1 Collaborative score distillation

Suppose a set of parameters {θi}Ni=1 that generates images x(i) = g(θi). Similar to SDS, our goal is
to update each θi by distilling the smoothed densities from the diffusion model by minimizing KL
divergence in Eq. (4). On the contrary, CSD solves Eq. (4) using SVGD demonstrated in Section 2.3
so that each θi can be updated in sync with updates of other parameters in the set {θi}Ni=1. At each
update, CSD samples t ∼ U(tmin, tmax) and ϵ ∼ N (0, I), and update each θi as follows:

∇θiLCSD
(
θi
)
=

w(t)

N

N∑
j=1

(
k(x

(j)
t ,x

(i)
t )(ϵωϕ(x

(j)
t ; y, t)− ϵ) +∇

x
(j)
t
k(x

(j)
t ,x

(i)
t )

) ∂x(i)

∂θi
, (8)

for each i = 1, 2, . . . , N . We refer to Appendix A for full derivation. Note CSD is equivalent to
SDS in Eq. (5) when N = 1, showing that CSD is a generalization of SDS to multiple samples. As
the pairwise kernel values are multiplied by the noise prediction term, each parameter update on
θi is affected by other parameters, i.e., the scores are mixed with importance weights according to
the affinity among samples. The more similar samples tend to exchange more score updates, while
different samples tend to interchange the score information less. The gradient of the kernels acts as a
repulsive force that prevents the mode collapse of samples. Moreover, we note that Eq. (8) does not
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make any assumption on the relation between θi’s or their order besides them being a set of images
to be synthesized coherently with each other. As such, CSD is also applicable to arbitrary image
generators, as well as text-to-3D synthesis in DreamFusion [26], which we compare in Section 4.4.

3.2 Instruction-guided editing by collaborative score distillation

In this section, we introduce an instruction-guided visual editing method using Collaborative Score
Distillation (CSD-Edit). Given source images x̃(i) = g(θ̃i) with parameters θ̃i, we optimize new
target parameters {θi}Ni=1 with x(i) = g(θi) such that 1) each x(i) follows the instruction prompt,
2) preserves the semantics of source images as much as possible, and 3) the obtained images are
consistent with each other. To this end, we update each parameter θi, initialized with θ̃i, using CSD
with noise estimate ϵ

ωy,ωs

ϕ of Instruct-Pix2Pix [14]. However, this approach often results in blurred
outputs, leading to the loss of details of the source image (see Figure 6). This is because the score
distillation term subtracts random noise ϵ, which perturbs the undesirable details of source images.

We handle this issue by adjusting the noise prediction term that enhances the consistency between
source and target images. Subtracting a random noise ϵ in Eq. (5) when computing the gradient is a
crucial factor, which helps optimization by reducing the variance of a gradient. Therefore, we amend
the optimization by changing the random noise into a better baseline function. Since our goal is
to edit an image with only minimal information given text instructions, we set the baseline by the
image-conditional noise estimate ϵωs

ϕ of the Instruct-Pix2Pix model without giving text instructions
on the source image. To be specific, our CSD-Edit is given as follows:

∇θiLCSD−Edit

(
θi
)
=

w(t)

N

N∑
j=1

(
k(x

(j)
t ,x

(i)
t )∆E(i)

t +∇
x
(j)
t
k(x

(j)
t ,x

(i)
t )

) ∂x(i)

∂θi
,

∆E(i)
t = ϵ

ωy,ωs

ϕ (x
(i)
t ; x̃, y, t)− ϵωs

ϕ (x̃
(i)
t ; x̃, t).

(9)

In Section 4.4, we validate our findings on the effect of baseline noise on image editing performance.
We notice that CSD-Edit presents an alternative way to utilize Instruct-Pix2Pix in image-editing
without any finetuning of diffusion models, by posing an optimization problem.

3.3 CSD-Edit for various complex visual domains

Panorama image editing. Diffusion models are usually trained on a fixed resolution (e.g., 512×512
for Stable Diffusion [4]), thus when editing a panorama image (i.e., an image with a large aspect
ratio), the editing quality significantly degrades. Otherwise, one can crop an image into smaller
patches and apply image editing on each patch. However this results in spatially inconsistent images
(see Figure 2, Patch-wise Crop, Appendix D). To that end, we propose to apply CSD-Edit on patches
to obtain spatially consistent editing of an image, while preserving the semantics of the source
image. Following [38], we sample patches of size 512×512 that overlap using small stride and
apply CSD-Edit on the latent space of Stable Diffusion [4]. Since we allow overlapping, some pixels
might be updated more frequently. Thus, we normalize the gradient of each pixel by counting the
appearance. Remark that one can give different instructions on the different regions of an image
while maintaining consistency (See Appendix C for details).

Video editing. Editing a video with an instruction should satisfy the following: 1) temporal
consistency between frames such that the degree of changes compared to the source video should
be consistent across frames, 2) ensuring that desired edits in each edited frame are in line with the
given prompts while preserving the original structure of source video, and 3) maintaining the sample
quality in each frame after editing. To meet these requirements, we randomly sample a batch of
frames and update them with CSD-Edit to achieve temporal consistency between frames.

3D scene editing. We consider editing a 3D scene reconstructed by a Neural Radiance
Field (NeRF) [27], which represents volumetric 3D scenes using 2D images. To edit reconstructed
3D NeRF scenes, it is straightforward to update the training views with edited views and finetune
the NeRF with edited views. Here, the multi-view consistency between edited views should be
considered since inconsistencies between edits across multiple viewpoints lead to blurry and unde-
sirable artifacts, hindering the optimization of NeRF. To mitigate this, Haque et al. [39] proposed
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Figure 5: Panorama image editing. Compar-
ison of CSD-Edit with baselines at different
guidance scales ωy ∈ {3.0, 5.0, 7.5, 10.0}.

Table 1: Video editing. Quantitative comparison
of CSD-Edit with baselines on video editing. Bold
indicates the best results.

CLIP Directional CLIP Image LPIPS
Similarity ↑ Consistency ↑ ↓

FateZero [22] 0.312±0.003 0.948±0.001 0.264±0.002

Pix2Video [25] 0.229±0.001 0.948±0.001 0.282±0.001

CSD-Edit (Ours) 0.319±0.002 0.957±0.001 0.235±0.001

Table 2: 3D scene editing. Quantitative compari-
son of CSD-Edit with baselines on 3D scene edit-
ing. Bold indicates the best results.

CLIP Directional CLIP Image LPIPS
Similarity ↑ Consistency ↑ ↓

IN2N [14] 0.177±0.062 0.993±0.002 0.053±0.028

CSD-Edit (Ours) 0.215±0.052 0.994±0.001 0.045±0.012

Instruct-NeRF2NeRF, which performs editing on a subset of training views and updates them se-
quentially at training iteration with intervals. However, image-wise editing results in inconsistencies
between views, thus they rely on the ability of NeRF in achieving multi-view consistency. Contrary
to Instruct-NeRF2NeRF, we update the dataset with multiple consistent views through CSD-Edit,
which serves as better training resources for NeRF, leading to less artifacts and better preservation of
source 3D scene.

4 Experiments

4.1 Text-guided panorama image editing

For the panorama image-to-image translation task, we compare CSD-Edit with different versions
of Instruct-Pix2Pix: one is which using naive downsizing to 512 × 512 and performing Instruct-
Pix2Pix, and another is updating Instruct-Pix2Pix on the patches cropped with overlapping as in
MultiDiffusion [38] (Instruct-Pix2Pix + Overlapping). For comparison, we collect a set of panorama
images (i.e., which aspect ratio is higher than 3), and edit each image to various artistic styles and
different guidance scales ωy . For evaluation, we use pre-trained CLIP [40] to measure two different
metrics: 1) consistency between source and target images by computing similarity between two
image embeddings, and 2) CLIP directional similarity [41] which measures how the change in text
agrees with the change in the images. The experimental details are in Appendix B.1.

In Figure 5, we plot the CLIP scores of different image editing methods with different guidance
scales. We notice that CSD-Edit provides the best trade-off between the consistency between
source and target images and fidelity to the instructions. Figure 2 provides a qualitative comparison
between panorama image editing methods. Note that applying Instruct-Pix2Pix to patches cropped
with overlapping (Instruct-Pix2Pix + Overlapping) is able to edit images while preserving spatial
consistency, as evidenced by high CLIP image similarity, however, the edited images show inferior
fidelity to the text instruction even when using a large guidance scale, resulting in much lower CLIP
directional similarity. We conjecture that this happens because the scores are diluted by other scores,
i.e., one patch may respond much more or much less to the instruction compared to others. Additional
qualitative results are in Appendix D.

4.2 Text-guided video editing

For the video editing experiments, we primarily compare CSD-Edit with existing zero-shot video
editing schemes that employ text-to-image diffusion models such as FateZero [22] and Pix2Video [25].
To emphasize the effectiveness of CSD-Edit over learning-based schemes, we also compare it with
Gen-1 [21], a state-of-the-art video editing method trained on a large video dataset. For quantitative
evaluation, we report CLIP image-text directional similarity as in Section 4.1 to measure the alignment
between changes in text and images. We also measure CLIP image consistency and LPIPS [42]
between consecutive frames to evaluate temporal consistency. In addition to the objective metrics
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Source SDS (Random noise subtraction)
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“Give him a cap”

Figure 6: Ablation study. Given a source video (top left), CSD-Edit without SVGD results in
inconsistent frames (bottom left), and replacing the subtraction of image-conditioned noise in CSD-
Edit to the subtraction of random noise results in loss of details and original structures (top right).
CSD-Edit obtains and preserves consistency between edits without loss of semantics (bottom right).

for evaluating consistency and instruction fidelity, we also conduct a user study, given the subjective
nature of editing tasks. We measure the user rankings for temporal consistency between edited frames,
frame-wise instruction fidelity, and the editing quality, respectively. We use video sequences from
the popular DAVIS [33] dataset at a resolution of 1920× 1080. Please refer to Appendix B.2 and
Appendix C.3 for a detailed description of the baseline methods and experimental setup.

Table 1 and Table 6 in Appendix C.3 summarize a quantitative comparison between CSD-Edit and
the baselines. We note that CSD-Edit consistently outperforms the existing zero-shot video editing
approaches in terms of both temporal consistency and fidelity to given text prompts. Furthermore,
Figure 3 qualitatively demonstrates the superiority of CSD-Edit over the baselines. Specifically,
CSD-Edit maintains a consistent style across all frames for both the woman and the background
elements (e.g., bench, trees), ensuring a consistent degree of editing throughout the video. On the
other hand, FateZero and Pix2Video result in noticeably inconsistent edits from one frame to the next.
Impressively, CSD-Edit not only demonstrates temporally consistent edits compared to Gen-1, but it
also excels at preserving the original semantics of the source video, even without training on a large
video dataset and without requiring any architectural modifications to the diffusion model. Additional
qualitative results, including video stylization and object-aware editing tasks, are in Appendix D.

4.3 Text-guided 3D scene editing

For the text-guided 3D scene editing experiments, we mainly compare our approach with Instuct-
NeRF2NeRF (IN2N) [39]. For a fair comparison, we exactly follow the experimental setup which
they used, and faithfully find the hyperparameters to reproduce their results. For evaluation, we render
images at the novel views (i.e., views not seen during training), and report CLIP image similarity
and LPIPS between consecutive frames in rendered videos to measure multi-view consistency, as
well as CLIP image-text similarity to measure fidelity to the instruction. In addition, we conduct user
studies to evaluate the multi-view consistency, instruction-fidelity, and the editing quality, respectively.
Detailed explanations for each dataset sequence and training details can be found in Appendix B.3.

Figure 4, Table 2, and Table 7 in Appendix C.3 summarize the comparison between CSD-Edit and
IN2N. We notice that CSD-Edit enables a wide-range control of 3D NeRF scenes, such as delicate
attribute manipulation (e.g., facial expression alterations) and scene-stylization (e.g., conversion to
the animation style). Especially, we notice two advantages of CSD-Edit compared to IN2N. First,
CSD-Edit presents high-quality details to the edited 3D scene by providing multi-view consistent
training views during NeRF optimization. In Figure 4, one can observe that CSD-Edit captures sharp
details of the anime character, while IN2N results in a blurry face. Second, CSD-Edit is better at
preserving the semantics of source 3D scenes, e.g., backgrounds or colors. For instance in Figure 4,
we notice that CSD-Edit allows subtle changes in facial expressions without changing the color of
the background or adding a beard to the face.
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Figure 7: Ablation on panorama image edit-
ing. Ablation study of CSD-Edit by removing
SVGD or replacing the subtraction of image-
conditioned noise into the random noise (SDS).

Table 3: Ablation on video editing. Ablation
study of CSD-Edit by removing SVGD or replac-
ing the subtraction of the image-conditioned noise
into the random noise (i.e., SDS).

CLIP Directional CLIP Image LPIPS
Similarity ↑ Consistency ↑ ↓

CSD-Edit 0.320 0.957 0.236
Without SVGD 0.278 0.909 0.372

SDS [26] 0.270 0.884 0.316

Table 4: Ablation on 3D scene editing. Ablation
study of CSD-Edit by removing SVGD or replac-
ing the subtraction of the image-conditioned noise
into the random noise (i.e., SDS).

CLIP Directional CLIP Image LPIPS
Similarity ↑ Consistency ↑ ↓

CSD-Edit 0.239 0.995 0.043
Without SVGD 0.186 0.993 0.053

SDS [26] 0.186 0.994 0.053

4.4 Ablation study

To demonstrate the effectiveness of our method, CSD-Edit, we conduct ablation studies in each visual
domain. To verify the role of Stein Variational Gradient Descent (SVGD) in ensuring consistency
during the editing, we remove the kernel mixing component in Eq. (9). In addition, to verify the role
of the subtracting image-conditioned noise estimate (ϵωs

ϕ in Eq. (9)) in obtaining high-quality visual
edits, we subtract the Gaussian noise ϵ that is used to forward samples as similar to SDS [26], instead
of the image-conditioned noise estimate. Again, we follow the experimental and evaluation setups in
Section 4.1, Section 4.2, and Section 4.3 for the editing of each visual domain, respectively.

Figure 7, Table 3, and Table 4 show the quantitative results of the ablation studies on panorama
image editing, video editing, and 3D scene editing, respectively. Note that the absence of SVGD in
CSD-Edit radically alters the image, underscoring its critical role in consistency regularization. This
is evidenced by lower CLIP image similarity scores, which measure the consistency between the
source and edited images, and lower LPIPS scores, which evaluate the consistency between edits. In
addition, the lack of mixing scores between samples leads to abrupt and undesirable changes in the
source, as shown in Figure 8. Further, replacing image-conditioned noise subtraction with random
noise subtraction results in a loss of the original structure of the source image, which significantly
degrades CLIP image similarity and CLIP directional similarity.

In Figure 6, we provide a qualitative validation of the effectiveness of our method on video editing.
CSD-Edit consistently edits a source video by adding a red cap to a man’s head when given the
instruction ”Give him a cap.” However, with SVGD, the edits between frames are inconsistent, e.g.
both blue and red caps appear on the edited frames. In addition, if we set the baseline noise as the
random noise injected into the source and target images, each frame becomes blurred and loses the
original structures, such as blurred legs and backgrounds. For more qualitative results of our ablation
studies, please refer to Figure 13 in Appendix D.

5 Related work

Following the remarkable success of text-to-image diffusion models [4, 20, 1, 2, 43], numerous
works have attempted to exploit rich knowledge of them for various visual editing tasks including
images [10, 44, 13, 45, 14, 12, 15], videos [46, 25], 3D scenes [39], etc. However, extending
existing image editing approaches to more complex visual modalities often faces a new challenge;
consistency between edits, e.g., spatial consistency in high-resolution images, temporal consistency
in videos, and multi-view consistency in 3D scenes. While prior works primarily focus on designing
task-specific methods [24, 22, 25] or model fine-tuning for complex modalities [46], we present a
modality-agnostic novel method for editing, effectively capturing consistency between samples.

The most related to our work is DreamFusion [26], which introduced Score Distillation Sampling
(SDS) for the creation of 3D assets, leveraging the power of text-to-image diffusion models. Despite
the flexible merit of SDS to enable the optimization of arbitrary differentiable operators, most
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(a) Source

“Turn sheeps into tigers”

(b) CSD-Edit without SVGD (c) CSD-Edit

Figure 8: Ablation study for the effect of SVGD. Our kernel mixing scores in CSD-Edit act as a
regularizer that prevents abrupt changes in images, ensuring better consistency: the tiger is generated
in the unwanted region of a source image when SVGD is not applied in the update.

works mainly focus on applying SDS to enhance the synthesis quality of 3D scenes by introducing
3D-specific frameworks [47, 48, 49, 50, 51]. Although there exists some work to apply SDS for
visual domains other than 3D assets, they have limited their scope to image editing [52], or image
generation [53]. Here, we argue that the current main challenge preventing the wider application
of SDS, especially in higher-dimensional visual manipulations beyond single 2D images at fixed
resolutions, is the lack of control over inter-sample consistency. To the best of our knowledge, our
work is the first to identify this challenge and to lay the novel foundations for principled adaptation
of text-to-image diffusion models to more diverse and high-dimensional visual manipulations.

6 Conclusion

In this paper, we propose Collaborative Score Distillation (CSD) for consistent visual synthesis and
manipulation. CSD is built upon Stein variational gradient descent, where multiple samples share
their knowledge distilled from text-to-image diffusion models during the update. Furthermore, we
propose CSD-Edit that gives us consistent editing of images by distilling minimal, yet sufficient
information from instruction-guided diffusion models. We demonstrate the effectiveness of our
method in text-guided translation of diverse visual contents, such as in high-resolution images, videos,
and real 3D scenes, outperforming previous methods both quantitatively and qualitatively.

Limitations and future works. Since we use pre-trained text-to-image diffusion models, obtained
results are often imperfect due to the inherent inability of diffusion models to understand language.
Furthermore, our method relies on generative priors derived from large text-to-image diffusion
models, which may inadvertently contain biases due to the auto-filtering process applied to the
vast training dataset. However, we believe that employing Consistent Score Distillation (CSD) can
assist us in identifying and understanding such undesirable biases. By leveraging the inter-sample
relationships and aiming for consistent generation and manipulation of visual content, our method
provides a valuable avenue for comprehending the interaction between samples and prompts. Further
exploration of this aspect represents an intriguing future direction.

In addition, although our primary interest is in the editing (not the generation) of panoramic images,
videos, or 3D scenes, we believe that CSD has the potential to be used in their generation. As
presented in Section C.2 in Appendix C, we show how CSD can improve generation performance
over SDS [26] on text-to-3D generation experiments. In particular, we verify the effect of CSD in
improving the geometry and quality of text-to-3D generation. In this sense, exploring this aspect of
synthesis with CSD could be an interesting research topic and we leave it for future work.

Societal impact. Our research introduces a comprehensive image editing framework that encom-
passes various modalities, including high-resolution images, videos, and 3D scenes. While it is
important to acknowledge that our framework might be potentially misused to create fake content,
this concern is inherent to image editing techniques as a whole. We expect future research on the
detection of generated visual content.
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Appendix
Website: https://subin-kim-cv.github.io/CSD

A Technical details

In this section, we provide detailed explanations on the proposed methods, CSD and CSD-Edit.

CSD derivation. Consider a set of parameters {θi}Ni=1 which generates images x(i) = g(θi). For
each timestep t ∼ U(tmin, tmax), we aim at minimizing the following KL divergence

DKL

(
q(x

(i)
t |x(i) = g(θi))∥pϕ(xt; y, t)

)
for each i = 1, 2, . . . , N via SVGD using Eq. (7). To this end, we approximate the score function,
(i.e., gradient of log-density) by the noise predictor from diffusion model as follows:

∇
x
(i)
t

log pϕ(x
(i)
t ; y, t) ≈ −ϵϕ(x

(i)
t ; y, t)

σt
.

Then, the gradient of score function with respect to parameter θi is given by

∇θi log pϕ(x
(i)
t ; y, t) = ∇

x
(i)
t

log pϕ(x
(i)
t ; y, t)

∂x
(i)
t

∂θi
≈ −αt

σt
ϵϕ(x

(i)
t ; y, t)

∂x(i)

∂θ
, (10)

for each i = 1, . . . N . Finally, to derive CSD, we plug Eq. (10) to Eq. (7) to attain Eq. (8). Also,
we subtract the noise ϵ, which helps reduce the variance of the gradient for better optimization.
Following DreamFusion [26], we do not compute the Jacobian of U-Net. At a high level, CSD takes
the gradient update on each x(i) using SVGD and updates θi by simple chain rule without computing
the Jacobian. This formulation makes CSD a straightforward generalization to SDS for multiple
samples and leads to an effective gradient for optimizing consistency among batches of samples.

CSD-Edit derivation. As mentioned above, we subtract the random noise to reduce the variance of
CSD gradient estimation. This is in a similar manner to the variance reduction in policy gradient [54],
where having a proper baseline function results in faster and more stable optimization. Using
this analogy, our intuition is built upon that setting a better baseline function can ameliorate the
optimization of CSD. However, as shown in Figures 6 and Figure 13 in our manuscript, the default
choice of SDS (random noise) results in highly blurred outputs, because the noise-denoising process
of SDS blurs the image. Therefore, we propose to use image-conditional noise estimation as a
baseline function in image editing via CSD-Edit, so that the diffusion noise only alters the part where
the text instructs to change, by allowing CSD-Edit to optimize the latent driven only by the influence
of the instruction prompts. This approach is supported by the principle of Wasserstein gradient
flow [55], where the optimal gradient flow in variational inference is given by the difference between
the target score function and the source score function.

Moreover, we notice that similar observations were proposed in Delta Denoising Score (DDS) [52],
where they introduced an image-to-image translation method that is based on SDS, and the difference
of the noise estimate from target prompt and that from source prompt are used. Our CSD can be
combined with DDS by changing the noise difference term as follows:

∆Et = ϵϕ(xt; ytgt, t)− ϵϕ(x̃t; ysrc, t),

where x and x̃ are target and source images, ytgt and ysrc are target and source prompts. However,
we found that CSD-Edit with InstructPix2Pix is more amenable in editing real images as it does not
require a source prompt. Finally, we remark that CSD-Edit can be applied to various text-to-image
diffusion models such as ControlNet [17], which we leave for future work.
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B Implementation details

Setup. For the experiments with CSD-Edit, we use the publicly available pre-trained model of
Instruct-Pix2Pix [14]2 by default. We perform CSD-Edit optimization on the output space of Stable
Diffusion [4] autoencoder. We use SGD optimizer with step learning rate decay, without adding
weight decay. We set tmin = 0.2 and tmax = 0.5, where original SDS optimization for DreamFusion
used tmin = 0.2 and tmax = 0.98. This is because we do not generally require a large scale of noise
in editing. We use the guidance scale ωy ∈ [3.0, 15.0] and image guidance scale ωs ∈ [1.5, 5.0].
We find that our approach is less sensitive to the choice of image guidance scale, yet a smaller
image guidance scale is more sensitive to editing. All experiments are conducted on AMD EPYC
7V13 64-Core Processor and a single NVIDIA A100 80GB. Throughout the experiments, we use
OpenCLIP [56] ViT-bigG-14 model for evaluation.

B.1 Panorama image editing

To edit a panorama image, we first encode into the Stable Diffusion latent space (i.e., downscale by 8),
then use a stride size of 16 to obtain multiple patches. Then we select a B batch of patches to perform
CSD-Edit. Note that we perform CSD-Edit and then normalize by the number of appearances as
mentioned in Section 3.3. Note that our approach performs well even without using small batch size,
e.g., for an image of resolution 1920×512, there are 12 patches and we use B = 4.

For experiments, we collect 32 panorama images and conduct 5 artistic stylizations: “turn into Van
Gogh style painting”, “turn into Pablo Picasso style painting”, “turn into Andy Warhol style painting”,
“turn into oriental style painting”, and “turn into Salvador Dali style painting”. We use learning rate
of 2.0 and image guidance scale of 1.5, and vary the guidance scale from 3.0 to 10.0.

B.2 Video editing

We edit video sequences in DAVIS 2017 [33] by sampling 24 frames at the resolution of 1920×1080
from each sequence. Then, we resize all frames into 512×512 resolution and encode all frames each
using Stable Diffusion. We use learning rate [0.25, 2] and optimize them for [200, 500] iterations.

B.3 3D scene editing

Following Instruct-NeRF2NeRF [39], we first pretrain NeRF using the nerfacto model from NeRFS-
tudio [57], training it for 30,000 steps. Next, we re-initialize the optimizer and finetune the pre-trained
NeRF model with edited train views. In contrast to Instruct-NeRF2NeRF, which edits one train view
with Instruct-Pix2Pix after every 10 steps of update, we edit a batch of train views (batch size of 16)
with CSD-Edit after every 2000 steps of update. The batch is randomly selected among the train
views without replacement.

2https://github.com/timothybrooks/instruct-pix2pix
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C More experimental results

C.1 Compositional editing

Recent works have shown the ability of text-to-image diffusion models in compositional generation
of images handling multiple prompts [58, 59]. Here, we show that CSD-Edit can extend this ability to
compositional editing, even at panorama-scale images which require a particular ability to maintain
far-range consistency. Specifically, we demonstrate that one can edit a panorama image to follow
different prompts on different regions while keeping the overall context uncorrupted.

Given multiple textual prompts {yk}Kk=1, the compositional noise estimate is given by

ϵϕ(xt; {yk}Kk=1, t) =

K∑
k=1

αkϵ
ω
ϕ(xt; yk, t),

where αk are hyperparameters that regularize the effect of each prompt. When applying compositional
generation to the panorama image editing, the challenge lies in obtaining image that is smooth and
natural within the region where the different prompts are applied. To that end, for each patch of an
image, we set αk to be the area of the overlapping region between the patch and region where prompt
yk is applied. Also, we normalize to assure

∑
k αk = 1. In Figure 10, we illustrate some examples

on compositional editing of a panorama image. For instance, given an image, one can change into
different weathers, different seasons, or different painting styles without leaving artifacts that hinder
the spatial consistency of an image.

C.2 Text-to-3D generation with CSD

We explore the effectiveness of CSD in text-to-3D generation tasks following DreamFusion [26]. We
train a coordinate MLP-based NeRF architecture from scratch using text-to-image diffusion models.
Since the pixel-space diffusion model that DreamFusion used [26] is not publicly available, we used
an open-source implementation of pixel-space text-to-image diffusion model.3 Given a set of text
prompts, we run both DreamFusion and DreamFusion with CSD with a fixed seed. Our experiments
in this section are based on Stable-DreamFusion [60], a public re-implementation of DreamFusion,
given that currently the official implementation of DreamFusion is not available on public.

Setup. We use vanilla MLP based NeRF architecture [27] with 5 ResNet [61] blocks. Other
regularizers such as shading, camera and light sampling are set as default in [60]. We use view-
dependent prompting given the sampled azimuth angle and interpolate by the text embeddings. We
use Adan [62] optimizer with learning rate warmup over 2000 steps from 10−9 to 2× 10−3 followed
by cosine decay down to 10−6. We use batch size of 4 and optimize for 10000 steps in total, where
most of the case sufficiently converged at 7000 to 8000 steps. For the base text-to-image diffusion
model, we adopt DeepFloyd-IF-XL-v1.0 since we found it way better than the default choice of
Stable Diffusion in a qualitative manner. While the original DreamFusion [26] used guidance scale of
100 for their experiments, we find that guidance scale of 20 works well for DeepFloyd. We selected
30 prompts used in DreamFusion gallery4 and compare their generation results via DreamFusion
from the standard SDS and those from our proposed CSD. We use one A100 (80GB) GPU for each
experiment, and it takes ∼5 hours to conduct one experiment. For CSD implementation, we use
LPIPS [42] as a distance of RBF kernel. Note that LPIPS gives more computational cost than the
usual ℓ2-norm based RBF kernel. The LPIPS is computed between two rendered views of size 64×64.
For the kernel bandwidth, we use h = med2

logB , where med is a median of the pairwise LPIPS distance
between the views, B is the batch size.

For evaluation, we render the scene at the elevation at 30 degree and capture at every 30 degree of
azimuth angle. Then we compute the CLIP image-text similarity between the rendered views and
input prompts. We measure similarities for both textured views (RGB) and textureless depth views
(Depth). We also report Frechet Inception Distance (FID) between the RGB images and ImageNet
validation dataset to evaluate the quality and diversity of rendered images compared to natural images.

3https://github.com/deep-floyd/IF
4https://dreamfusion3d.github.io/gallery.html
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Table 5: Text-to-3D. Quantitative comparison between CSD and SDS under on text-to-3D generation
via DreamFusion [26]

CLIP Similarity CLIP Similarity FID
Color ↑ Geo ↑ ↓

SDS [26] 0.437 0.322 259.4
CSD (Ours) 0.447 0.345 247.1

Results. In Table 5, we report the evaluation results of CSD on text-to-3D generation comparison to
DreamFusion. Remark that CSD presents better CLIP image-text similarities in both RGB and Depth
views. Also, CSD achieves lower FID score showing its better quality on generated samples. Since
we used the same random seed in generating both CSD and DreamFusion, the shapes and colors are
similar. However, the results show that CSD obtains finer details in its generations.

In Figure 14, we qualitatively compare the baseline DreamFusion (SDS) and ours. We empirically
observe three advantages of using CSD over SDS. First, CSD provides better quality compared to
SDS. SDS often suffers from Janus problem, where multiple faces appear in a 3D object. We found
that CSD often resolves Janus problem by showing consistent information during training. See the
first row of Figure 14. Second, CSD can give us better fine-detailed quality. The inconsistent score
distillation often gives us blurry artifact or undesirable features left in the 3D object. CSD can handle
this problem and results in higher-quality generation, e.g., Figure 14 second row. Lastly, CSD can
be used for improving diversity. One problem of DreamFusion, as acclaimed by the authors, is that
it lacks sample diversity. Thus, it often relies on changing random seeds, but it largely alters the
output. On the other hand, we show that CSD can obtain alternative sample with only small details
changed, e.g., Figure 14 third row. Even when SDS is successful, CSD can be used in generating
diverse sample.

C.3 User study

Given the subjective nature of editing tasks, we additionally conduct subjective user studies, where we
ask three questions in evaluating the editing quality of both CSD-Edit and baselines: the consistency
of the edited results, frame-wise image instruction fidelity, and the editing quality. For each of the
three studies, we asked 20 subjects to rank different methods. As shown in Table 6 and Table 7,
our method, CSD-Edit, consistently outperforms other baselines achieving the best user preferences
across all three aspects.

Table 6: User study on video editing.

Temporal Instruction Editing
Consistency ↓ Fidelity ↓ Quality ↓

FateZero [22] 2.37 2.05 2.12
Pix2Video [25] 2.36 2.35 2.28

CSD-Edit (Ours) 1.27 1.6 1.6

Table 7: User study on 3D scene editing.

Temporal Instruction Editing
Consistency ↓ Fidelity ↓ Quality ↓

IN2N [14] 1.61 1.69 1.71
CSD-Edit (Ours) 1.39 1.31 1.29
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C.4 Computation time comparison

Regarding the computational efficiency of our method, we measure the computation times and
compare them with the baselines of each task. All these evaluations were conducted on a single
NVIDIA A100 80GB and AMD EPYC 7V13 64-Core Processor.

For panorama image editing experiments, we compare our method with the baseline where applying
Instruct-Pix2Pix to patches cropped with overlapping (InstructPix2Pix + Overlapping Patches). Note
that the computation time of both methods depends on the input image resolution, whereas we
show that our method becomes more efficient as the resolution goes higher. Table 8 shows how the
computation time (total time in seconds) differs by the size of the input image. Here, the baseline
method requires computing noise estimates of every patch at each diffusion step, while our method
only requires computing a minibatch of patches per iteration.

Table 8: Computation time comparison on panorama image editing.

Method Resolution Total time (sec.)

InstructPix2Pix + Overlapping Patches 1920×640 62
CSD-Edit (Ours) 1920×640 68

InstructPix2Pix + Overlapping Patches 3968×4352 487
CSD-Edit (Ours) 3968×4352 275

In video editing experiments, we measure the total computation time of our method and baseline
methods. As shown in Table 9, our method, CSD-Edit, consistently outperforms the baselines, even
taking the shortest time in editing (×3.3 times faster than FateZero [22], ×1.3 times faster than
Pix2Video [25]. Note that the computational efficiency of our method, CSD-Edit, on video editing can
be easily improved by reducing the number of iterations for optimization while using a larger learning
rate. Here, using a higher learning rate changes frames more radically, thus slightly degrading the
frame consistency, however, the effect is meager as shown in CLIP Image consistency and LPIPS
metrics.

Table 9: Computation time comparison on video editing.

Total time CLIP Directional CLIP Image LPIPS
(sec). Similarity ↑ Consistency ↑ ↓

FateZero [22] 192 0.312±0.003 0.948±0.001 0.264±0.002

Pix2Video [25] 77 0.229±0.001 0.948±0.001 0.282±0.001

CSD-Edit (Ours) 59 0.320±0.001 0.955±0.001 0.243±0.001

CSD-Edit (Ours) 423 0.319±0.002 0.957±0.001 0.235±0.001

In text-to-3D generation experiments, when directly comparing with DreamFusion [26](or SJC [63]),
there is a slight increase in the computational cost due to the usage of LPIPS metric as distance for
RBF kernel. For instance, it takes 1 hour to generate a 3D model with DreamFusion, while using
CSD takes 84 minutes. We note that the increment is not substantial, however, ours yields better
qualities with finer details, as shown in Table 5 and Figure 14 in the Appendix.
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C.5 More analysis about the batch size

We denote N as the total number of images (e.g., total patches of a panorama image or total frames
of a video) and we update B minibatch of samples per iteration. Intuitively, using a large B would
encourage more consistency among samples, but it is more computationally expensive. Also, we
observed that using large batch sizes dilutes the effect of editing. Thus, the batch size controls the
trade-off between computation time, editing quality, and preserving consistency. To further verify
our choice of B, we provide additional ablation studies on the panorama image editing experiments.
Given the same experimental setup as in Section 4.1 with fixed guidance scale=7.5, we swept over
B = 4, 8, 12, and measured the CLIP source-target image similarity, CLIP directional image-text
similarity, and computation time (iteration per second for total 200 iterations, measured on single
A100 40GB GPU). Table 10 demonstrates the effect of batch size.

Table 10: Ablation study about the batch size.

Batch size Total time (iter / sec.) CLIP Directional Similarity ↑ CLIP Image Similarity ↑
B=4 2.86 0.639 0.240
B=8 1.47 0.692 0.217
B=12 1.02 0.739 0.195

“Turn penguins into chickens”

(a) minibatch B=3

(b) minibatch B=12
Figure 9: Ablation study: the effect of batch size. One can control the diversity of generated output,
e.g., the same penguins are changed to more diverse chickens, by choosing an appropriate batch size.
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D Additional qualitative results

“Turn into sunny weather” “Turn into rainy weather” “Turn into snowy weather”

“Turn into spring” “Turn into fall”

“Turn into Van Gogh style painting” “Turn into Paul Gauguin style painting”

Source

Figure 10: Compositional image editing. CSD-Edit demonstrates the ability to edit consistently and
coherently across patches in panorama images. This provides the unique capability to manipulate
each patch according to different instructions while maintaining the overall structure of the source
image. Remarkably, CSD-Edit ensures a smooth transition between patches, even when different
instructions are applied.
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Source

“Turn sheeps into wolves” “Turn sheeps into kangaroos”

“Turn sheeps into polar bears” “Turn sheeps into reindeers”

Source

“Turn penguins into chickens” “Turn penguins into bears”

“Turn penguins into pandas” “Turn penguins into sea lions”

Figure 11: Object editing. CSD-Edit can edit many objects in a wide panorama image consistently
in accordance with the given instruction while preserving the overall structure of source images.
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“Turn a bear into a tiger”

“Give him a yellow T-shirt”
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Figure 12: Video editing. CSD-Edit demonstrates various editing from an object (e.g., tiger) to
attributes (e.g., color) while providing consistent edits across frames and maintaining the overall
structure of a source video.
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Source

“Turn into Van Gogh style painting”

“Turn into Pablo Picasso style painting”

“Turn into Andy Warhol style painting”

“Turn into oriental style painting”

“Turn into Salvador Dali style painting”

CSD-Edit CSD-Edit without SVGD CSD-Edit with Random Noise

Figure 13: Ablation study: SVGD and random noise. As illustrated, edits across different patches
are not consistent without SVGD. Also, when using random noise as baseline noise, it loses the
content and the detail of the source image.
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SDS CSD (Ours)

“a fox holding a videogame controller” “a crocodile playing a drum set”

SDS CSD (Ours)

“Chichen Itza, aerial view”“a plush dragon toy”

“a beautiful dress made out of fruit, on a mannequin” “a squirrel in samurai armor wielding a katana”

Figure 14: Text-to-3D generation examples. (First row) CSD helps to capture coherent geometry
compared to using SDS. (Second row) CSD allows learning finer details than SDS. (Third row) CSD
can provide diverse and high-quality samples without changing random seeds.
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“Turn it into an old vintage photo”Source

Source “Turn flowers into red roses”

Figure 15: Limitations. (First row) CSD-Edit often manipulates undesirable contents due to the
inherent inability of Instruct-Pix2Pix model. (Second row) CSD-Edit often produces artifacts on the
image due to the patch-wise update.

E Limitations

As our method leverages pre-trained Instruct-Pix2Pix, it inherits the limitations of it such as unde-
sirable changes to the image due to the biases. Also, as described in [14], Instruct-Pix2Pix is often
unable to change viewpoints, isolate a specific object, or reorganize objects within the image.

When editing a high-resolution image by dividing it into patches, it often remains an artifact at the
edge of the patches, especially at the corner side of an image. This is due to that the patches at the
corner are less likely to be sampled during the optimization. See Figure 15 for examples.

When editing a video, the edited video often shows a flickering effect due to the inability of the Stable
Diffusion autoencoder to compress the video. We believe that using CSD-Edit with video diffusion
models trained on video datasets can possibly overcome this problem.

26


	Introduction
	Preliminaries
	Diffusion models
	Score distillation sampling
	Stein variational gradient descent

	Method
	Collaborative score distillation
	Instruction-guided editing by collaborative score distillation
	CSD-Edit for various complex visual domains

	Experiments
	Text-guided panorama image editing
	Text-guided video editing
	Text-guided 3D scene editing
	Ablation study

	Related work
	Conclusion
	Technical details
	Implementation details
	Panorama image editing
	Video editing
	3D scene editing

	More experimental results
	Compositional editing
	Text-to-3D generation with CSD
	User study
	Computation time comparison
	More analysis about the batch size

	Additional qualitative results
	Limitations

