Scalable Neural Video Representations with Learnable Positional Features

Subin Kim^{*,1}, Sihyun Yu^{*,1}, Jaeho Lee², Jinwoo Shin¹

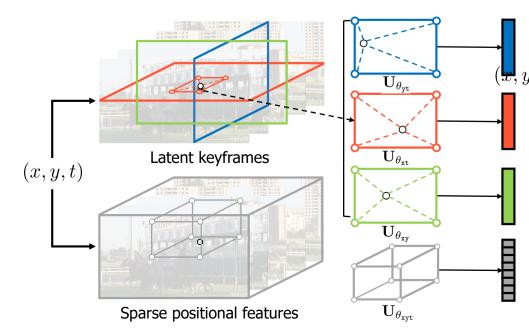
¹Korea Advanced Institute of Science and Technology (KAIST) ²Pohang University of Science and Technology (POSTECH)

TL;DR: We propose a compute-/memory-efficient neural representation for videos

Summary

NVP can capture the detail of a video containing dynamic motions after training for "1 minute".

NeRV(BPP: 0.938)


Instant-ngp (BPP: 6.489) NVP (ours, BPP: 0.189)

Ground Truth

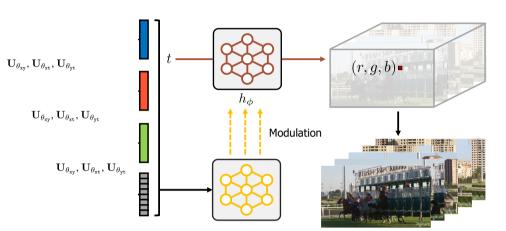
Motivation: Recent advances in coordinate-based neural representations (CNRs) have shown great promise in the field as a new paradigm for representing complex signals. However, video CNRs often suffer from two inefficiencies that prevent them from practical usage; (1) severe compute-inefficiency and (2) sacrifice of the parameter-efficiency.

Contribution: We introduce a *neural video representation with learnable positional features* (NVP), a novel CNR for videos that is the best of both worlds, achieving high-quality encoding and the compute-/parameter-efficiency simultaneously.

Amortize a Given Video as Succinct Latent Grids

Learnable latent keyframes ($U_{\theta_{xy}}, U_{\theta_{xt}}, U_{\theta_{yt}}$) • Image-like 2D latent grids across t-, y-, x-axis. Learned to capture common representative **contents** over spatio-temporal directions.

Sparse positional features ($\mathbf{U}_{ heta_{ ext{xyt}}}$)


- Video-like 3D sparse latent grids.
- Despite its sparsity, it **efficiently captures the** local details of the video since the common contents of a given video are effectively encoded with the latent keyframes.

KAIST

Modulate the Latent Codes to the RGB Values

Modulated implicit function (h_{ϕ})

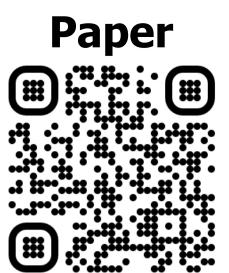
- Maps a latent vector to the corresponding RGB value.
- Design h_{ϕ} to be a *K*-layer Multi-layer perceptron (MLP) modulated by another modulator network, instead of simple MLP (more expressive power).

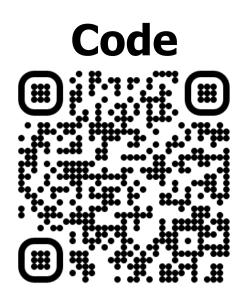
<u>Compute-/Memory-efficient Compression Procedure</u>

Incorporate powerful existing image & video codecs to compress our latent features

- Quantize latent keyframes and sparse positional features as 2D/3D grids of 8-bit latent codes.
- Regard the quantized latent codes as image and video pixels and compress them using codecs.
- Notably maintaining the video quality without any fine-tuning (compute-efficient).

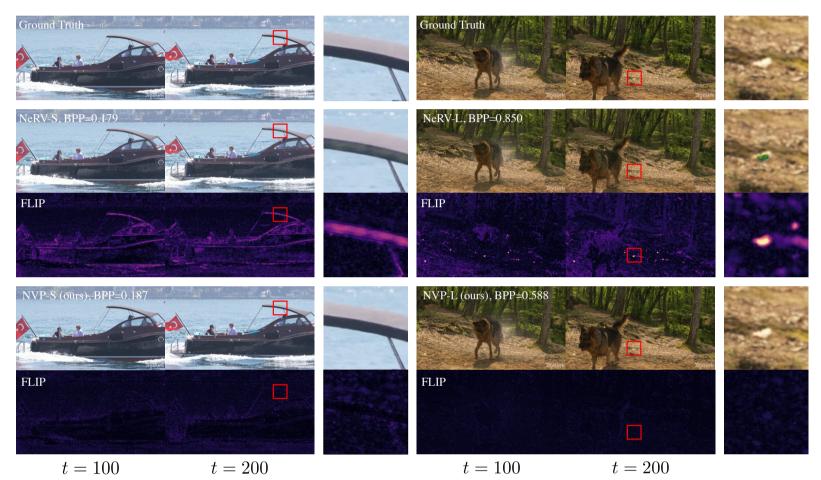
Quantitative Results


Compute-efficiency; achieves reasonable encoding quality within a short training cost.


Encoding time	Method	BPP	PSNR (†)	FLIP (\downarrow)	LPIPS (\downarrow)
\sim 5 minutes	Instant-ngp [34] NeRV-S* [5]	7.580 1.072	33.15 ± 3.19 24.16 ± 5.17	$0.090 {\pm} 0.034$ $0.219 {\pm} 0.097$	$0.226 {\pm} 0.112$ $0.542 {\pm} 0.180$
	NVP-S* (ours)	0.901	34.57±2.62	$0.075 {\pm} 0.021$	$0.190{\pm}0.100$
~ 10 minutes	Instant-ngp [34]	7.580	$34.07 {\pm} 3.01$	$0.082{\pm}0.030$	$0.204{\pm}0.105$
	NeRV-S* [5]	1.072	$26.53 {\pm} 5.92$	$0.176 {\pm} 0.088$	$0.460 {\pm} 0.184$
	NVP-S* (ours)	0.901	35.79±2.31	$0.065 {\pm} 0.016$	$0.160 {\pm} 0.098$
~ 1 hour	Instant-ngp [34]	7.580	$35.69 {\pm} 2.72$	$0.071 {\pm} 0.025$	$0.162{\pm}0.090$
	NeRV-S* [5]	1.072	33.26 ± 4.31	$0.094{\pm}0.038$	$0.240{\pm}0.112$
	NVP-S* (ours)	0.901	$37.61{\pm}2.20$	$0.052{\pm}0.011$	$0.145{\pm}0.106$

Parameter-efficiency; succinct neural representation with a high-quality encoding.

$\sim \! 15$ hours	SIREN [40] FFN [46] Instant-ngp [34] NeRV-S [5]	0.284 0.284 0.229 0.201	27.20 ± 3.77 28.18 ± 3.62 28.81 ± 3.48 36.14 ± 3.97	0.169 ± 0.059 0.153 ± 0.055 0.155 ± 0.057 0.067 ± 0.023	0.409 ± 0.124 0.442 ± 0.126 0.390 ± 0.135 0.163 ± 0.101
\sim 8 hours	NVP-S (ours)	0.210	36.46±2.18	0.067±0.017	0.135±0.083
>40 hours	SIREN [40] FFN [46] Instant-ngp [34] NeRV-L [5]	0.284 0.284 0.436 0.485	26.09 ± 3.88 29.53 ± 3.44 29.98 ± 3.39 35.00 ± 3.31	0.175 ± 0.082 0.135 ± 0.052 0.138 ± 0.051 0.079 ± 0.020	$\begin{array}{c} 0.486 {\pm} 0.188 \\ 0.391 {\pm} 0.124 \\ 0.358 {\pm} 0.140 \\ 0.145 {\pm} 0.100 \end{array}$
~ 11 hours	NVP-L (ours)	0.412	37.47±2.08	$0.062{\pm}0.017$	0.102±0.061




Qualitative Results

NVP does not suffer from undesirable artifacts when compressed.

Various Application of NVP as a Video CNR

NVP can show numerous compelling properties as a video CNR.

See the paper for more experiments, including ablation studies and detailed explanations. For better, playable illustrations and qualitative results, please refer to our project page.